Study of binding between protein A and immunoglobulin G using a surface tension probe.

نویسندگان

  • L Yang
  • M E Biswas
  • P Chen
چکیده

Molecular interactions and binding are one of the most important and fundamental properties in the study of biochemical and biomedical systems. The understanding of such interactions and binding among biomolecules forms the basis for the design and processing of many biotechnological applications, such as bioseparation and immunoadsorption. In this study, we present a novel method to probe molecular interactions and binding based on surface tension measurement. This method complements conventional techniques, which are largely based on optical, spectroscopic, fluorescence polarization, chromatographic or atomic force microscopy measurements, by being definite in determining molecular binding ratio and flexible in sample preparation. Both dynamic and equilibrium (or quasi-equilibrium) information on molecular binding can be obtained through dynamic and equilibrium surface tension measurements. For an important pair of biological ligand and ligate, Protein A and immunoglobulin G (IgG), the existence of molecular interactions and the binding ratio of 1:2 have been determined unequivocally with the proposed surface tension method. These results are confirmed/supported by a mass balance calculation and spectrophotometry experiment. In addition, adsorption isotherms for Protein A and IgG separately at the air/water interface have been established with the dynamic surface tension measurements. The results show that the Langmuir isotherm equation can describe the adsorption data satisfactorily for both Protein A and IgG solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Superficial Clefts on Fragment of Antigen Binding in Human Immunoglobulin G by Computational Immunology

Background: Immunoglobulins (Igs) are protective glycoproteins specifically identify and eradicate microbes. Fragment of antigen binding (Fab) is a portion of antibody which binds to antigen and consists of one variable and one constant domain of one heavy and one light chain. Idiotypes, epitopes situated on Igs variable region, could be exploited to monitor and target malignant B cells and are...

متن کامل

Evaluation and Characterization of Free and Immobilized Acethylcholinesterase with Fluorescent Probe, Differential Scanning Calorimetry and Docking

Acetylcholinesterase (AChE) enzyme which catalyses the hydrolysis of choline esters, such as acetylcholine, is very important in nerve function. Previous structural studies showed the possible amyloid fibril formation on the AChE. Therefore it is important to understand interaction of ligands to prevent the formation of  amyloid fibrils. The purpose of the present study was to  char...

متن کامل

In Silico Design and Verification of LAMP-BDNF Chimeric Protein for Presentation of BDNF on the Surface of Exosomes for Drug Delivery Through Blood-Brain Barrier

Background and purpose: The mature form of brain-derived neurotrophic factor (BDNF) binds to BDNF/NT-3 growth factors receptor (Trk-B). This binding leads to activation of Ras–MAPK pathway which is integrated with cell growth and proliferation. The BDNF deficiency is correlated with various diseases and affects aging and miscellaneous. In the present study we aimed to design a chimeric LAMP-BDN...

متن کامل

Determination of Surface Tension and Viscosity of Liquids by the Aid of the Capillary Rise Procedure Using Artificial Neural Network (ANN)

The present investigation entails a procedure by which the surface tension and viscosity of liquids could be redicted.To this end, capillary experiments were performed for porous media by utilizing fifteen different liquids and powders. The time of capillary rise to a certain known height of each liquid in a particular powder was recorded. Two artificial neural networks (ANNs) were...

متن کامل

Isothermal Titration Calorimetry and Molecular Dynamics Simulation Studies on the Binding of Indometacin with Human Serum Albumin

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Drug binding to HSA is crucial to study the absorption, distribution, metabolism, efficiency and bioavailability of drug molecules. In this study, isothermal titration calorimetry and molecular dynamics simulation of HSA and its complex with indometacin (IM) were performed to investigate thermodynamics parameters and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 84 1  شماره 

صفحات  -

تاریخ انتشار 2003